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The Halting Problem 
 
ATM = { 〈M, w〉 | M is a TM and M accepts w } 
 
U = “On input 〈M, w〉, where M is a TM and w is a string: 

1. Simulate M on input w. 
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject. 

 
[ U recognizes ATM, but does not decide it, because if M loops forever, so does U ] 
 
[ ATM is not decidable, but how do we prove it? ] 
 
Diagonalization 
 
Definition 
 
A set A is countable if it is finite or there is a one-to-one correspondence between all the 
elements of A and N 
 
[ If there is a one-to-one correspondence between all the elements of any two sets, we say 
they have the same cardinality (or size) ] 
 
[ show that the even numbers are countable ] 
 
[ show that the rational numbers are countable ] 
 
Theorem 
 
R is uncountable 
 
Proof 
 
It’s sufficient to show that [0, 1] is uncountable. 
Let f: N → [0, 1] be one-to-one and onto. 
 
[ one-to-one: f(47) and f(635) can’t map to the same real number ] 
[ onto: every real is included in the mapping ] 
 
f(1) = 0.b1,1b1,2b1,3b1,4b1,5 … 
f(2) = 0.b2,1b2,2b2,3b2,4b2,5 … 
f(3) = 0.b3,1b3,2b3,3b3,4b3,5 … 
f(4) = 0.b4,1b4,2b4,3b4,4b4,5 … 
f(5) = 0.b5,1b5,2b5,3b5,4b5,5 … 
… 
 
where each bi,j is a binary digit (0 or 1) 
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We construct a real number a = 0.a1a2a3… that is not included in this mapping. 
 
a1 ≠ b1,1  ( if b1,1 is 0, a1 is 1; if b1,1 is 1, a1 is 0 ) 
a2 ≠ b2,2 
a3 ≠ b3,3 
a4 ≠ b4,4 
a5 ≠ b5,5 
… 
 
Suppose a is in the mapping. 
Then f(n) = a for some n. 
The n-th digit in f(n) is bn,n 
The n-th digit in a is an 
But by construction an ≠ bn,n 
 
[ why can’t we have 1 = .100000…, 2 = .010000…, 3 = .1100000…, … ] 

 
 
Theorem 
 
ATM is undecidable ( recall that ATM = { 〈M, w〉 | M is a TM and M accepts w } ) 
 
Proof 
 
Suppose ATM is decidable 

Let H be a decider for ATM  

 Then H = 

! 

accept if M accepts w

reject if M rejects or loops on w

" 
# 
$ 

 

 Construct D = “ On input 〈M〉 : [ M is a TM ] 
1. Run H on input 〈M, 〈M〉〉 [ ex: Pascal compiler written in Pascal ]  
2. Output the opposite of what H outputs 

(if H accepts, reject; if H rejects, accept) ” 
Running H on input 〈D, 〈D〉〉 yields a contradiction: 
Case A: H accepts 〈D, 〈D〉〉 ( meaning that D accepts 〈D〉 ) 

  Therefore we reject ( meaning D rejects 〈D〉 ) 
  ⇒⇐ 

Case B: H rejects 〈D, 〈D〉〉 ( meaning that D rejects 〈D〉 ) 
  Therefore we accept ( meaning D accepts 〈D〉 ) 

 ⇒⇐ 
In both case, we get a contradiction, therefore ATM is not decidable. 
 
[ the book shows how this proof can be viewed as a diagonalization proof ] 
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Definition A language is co-Turing-recognizable if its complement in Turing-
recognizable. 
 
Theorem 
 
A language is decidable iff it is Turing-recognizable and co-Turing-recognizable. 
 
Proof 
 
( ⇒ ) 
Assume A is decidable 
 Then L is Turing-recognizable 
 And L′ is decidable 
 So L′ is Turing-recognizable 
Therefore, A is decidable ⇒ A and A′ are both Turing-recognizable 
 
( ⇐ ) 
Assume both A and A′ are Turing-recognizable 

Let M1 be a TM that recognizes A 
Let M2 be a TM that recognizes A′ 
Construct M = “ On input w: 

1. Run both M1 and M2 on input w in parallel 
2. If M1 accepts, accept; if M2 accepts, reject ” 

w ∈ A ⇒ M1 halts & accepts ⇒ M halts & accepts 
w ∉ A ⇒ M2 halts & rejects ⇒ M halts & rejects 
Therefore, M decides A 

Therefore, A & A′ are Turing-recognizable ⇒ A is decidable 
 
Corollary 
 
A′TM is not Turing-recognizable 
 
Proof 
 
If it were, ATM would be decidable (which is isn’t) 
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Reducibility 
 
Theorem HALTTM = { 〈M, w〉 | TM M halts on input w } is undecidable 
 
Proof 
Suppose HALTTM is decidable 
 Let R be a decider for HALTTM 
 (*) Construct TM S that uses R to decide ATM 
 ATM is undecidable ⇒⇐ 
HALTTM is undecidable 
 
S = “ On input 〈M, w〉: 

1. Run R on 〈M, w〉 
2. If R rejects (M does not halt on w), reject 
3. If R accepts (M halts on w), run M on w 

4. If M accepts, accept 
5. If M rejects, reject 

 
Theorem ETM = { 〈M〉 | M is a TM and L(M) = ∅ } is undecidable 
 
Proof 
Suppose ETM is decidable 
 Let R be a decider for ETM 
 (*) Construct TM S that uses R to decide ATM 
 ATM is undecidable ⇒⇐  
ETM is undecidable 
 
S = “ On input 〈M, w〉: 

1. Construct M1 that rejects all strings that are not w, and accepts w only if M 
accepts w. 
( M1 = On x: if x ≠ w, reject else Run M on w; if M accepts, accept ) 
[ M1 is not a decider] 
[ we are not running it, we are merely constructing it ] 

2. Run R on M1  
3. R rejects M1 ⇒ L(M1) ≠ ∅ ⇒ M1 accepts w ⇒ M accept w; accept 〈M, w〉 
4. R accepts M1 ⇒ L(M1) = ∅ ⇒ M1 does not accepts w ⇒ M does not accept w (it 

reject or loops on w); reject 〈M, w〉 
 
Theorem REGULARTM = { 〈M〉 | M is a TM and L(M) is regular } is undecidable 
 
Proof 
Suppose REGULARTM is decidable 
 Let R be a decider for REGULARTM 
 (*) Construct TM S that uses R to decide ATM 
 ATM is undecidable ⇒⇐  
REGULARTM is undecidable 
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S = “ On input 〈M, w〉: 
5. Construct M2 that accepts all string in the non-regular language 0n1n, and accepts 

all other string only if M accepts w. 
[ therefore if M accepts w, M2 recognizes Σ*, which is regular ] 
( M2 = On x: if x has form 0n1n, accept else Run M on w; if M accepts, accept ) 
[ M2 is not a decider] 
[ we are not running it, we are merely constructing it ] 

6. Run R on M2  
7. R rejects M2 ⇒ L(M2) is regular ⇒ M2 accepts all strings ⇒ M accepts w; 

accept 〈M, w〉 
8. R accepts M1 ⇒ L(M1) is not regular ⇒ M2 only accepts string of form 0n1n ⇒ 

M does not accept w (it reject or loops on w); reject 〈M, w〉 ” 
 
Theorem EQTM  = { 〈M1, M2〉 | L(M1) = L(M2) } is undecidable 
 
Proof 
( show that if EQTM is decidable, so is ETM ) [ fairly easy ] 
 
Theorem ALLCFG = { 〈G〉 | G is a CFG and L(G) = Σ* }  
 
[ proof is in book; non-trivial ] 
 
The Domino Problem (PCP) 
 
[ describe the domino problem, state that its undecidable ] 
 

A single domino: 
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Problem: write a program that list the dominos (repeats OK) so that: 
 
top string of symbols = bottom string of symbols (if such a listing exists) 
 

For example: 
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 is a solution to the set above. 

 
Impossible! [ Not that it “takes to long” you can’t do it on a computer ] 
 

 
 
[ next week : mapping reducibility ] 


