<u>The Halting Problem</u>

 $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \}$

U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

- 1. Simulate M on input w.
- 2. If M ever enters its accept state, accept; if M ever enters its reject state, reject.

[U recognizes A_{TM} , but does not decide it, because if M loops forever, so does U]

[A_{TM} is not decidable, but how do we prove it?]

Diagonalization

Definition

A set A is *countable* if it is finite or there is a one-to-one correspondence between all the elements of A and N

[If there is a one-to-one correspondence between all the elements of any two sets, we say they have the same cardinality (or size)]

[show that the even numbers are countable]

[show that the rational numbers are countable]

<u>Theorem</u>

R is uncountable

<u>Proof</u>

It's sufficient to show that [0, 1] is uncountable. Let f: N $\rightarrow [0, 1]$ be one-to-one and onto.

[one-to-one: f(47) and f(635) can't map to the same real number] [onto: every real is included in the mapping]

$$\begin{split} f(1) &= 0.b_{1,1}b_{1,2}b_{1,3}b_{1,4}b_{1,5} \dots \\ f(2) &= 0.b_{2,1}b_{2,2}b_{2,3}b_{2,4}b_{2,5} \dots \\ f(3) &= 0.b_{3,1}b_{3,2}b_{3,3}b_{3,4}b_{3,5} \dots \\ f(4) &= 0.b_{4,1}b_{4,2}b_{4,3}b_{4,4}b_{4,5} \dots \\ f(5) &= 0.b_{5,1}b_{5,2}b_{5,3}b_{5,4}b_{5,5} \dots \\ \dots \end{split}$$

where each $b_{i,j}$ is a binary digit (0 or 1)

We construct a real number $a = 0.a_1a_2a_3...$ that is not included in this mapping.

 $\begin{array}{ll} a_{1} \neq b_{1,1} & (\mbox{ if } b_{1,1} \mbox{ is } 0, a_{1} \mbox{ is } 1; \mbox{ if } b_{1,1} \mbox{ is } 1, a_{1} \mbox{ is } 0 \mbox{)} \\ a_{2} \neq b_{2,2} & \\ a_{3} \neq b_{3,3} & \\ a_{4} \neq b_{4,4} & \\ a_{5} \neq b_{5,5} & \\ \cdots & \end{array}$

Suppose a is in the mapping. Then f(n) = a for some n. The n-th digit in f(n) is $b_{n,n}$ The n-th digit in a is a_n But by construction $a_n \neq b_{n,n}$

[why can't we have 1 = .100000..., 2 = .010000..., 3 = .1100000..., ...]

Theorem

 A_{TM} is undecidable (recall that $A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w \} \}$

<u>Proof</u>

Suppose A_{TM} is decidable Let H be a decider for A_{TM} Then H = $\begin{cases} accept & \text{if M accepts w} \\ reject & \text{if M rejects or loops on w} \end{cases}$ Construct D = " On input $\langle M \rangle$: [M is a TM] 1. Run H on input $\langle M, \langle M \rangle \rangle$ [ex: Pascal compiler written in Pascal] 2. Output the opposite of what H outputs (if H accepts, reject; if H rejects, accept) " Running H on input $\langle D, \langle D \rangle \rangle$ yields a contradiction: Case A: H accepts $\langle D, \langle D \rangle \rangle$ (meaning that D accepts $\langle D \rangle$) Therefore we reject (meaning D rejects $\langle D \rangle$) ⇒⇐ Case B: H rejects $\langle D, \langle D \rangle \rangle$ (meaning that D rejects $\langle D \rangle$) Therefore we accept (meaning D accepts $\langle D \rangle$) ⇒⇐ In both case, we get a contradiction, therefore A_{TM} is not decidable.

[the book shows how this proof can be viewed as a diagonalization proof]

Definition A language is *co-Turing-recognizable* if its complement in Turing-recognizable.

<u>Theorem</u>

A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

<u>Proof</u>

(⇒) Assume A is decidable Then L is Turing-recognizable And L' is decidable So L' is Turing-recognizable Therefore, A is decidable ⇒ A and A' are both Turing-recognizable

(\Leftarrow)

Assume both A and A' are Turing-recognizable Let M_1 be a TM that recognizes A Let M_2 be a TM that recognizes A' Construct M = " On input w: 1. Run both M_1 and M_2 on input w in parallel 2. If M_1 accepts, accept; if M_2 accepts, reject " $w \in A \Rightarrow M_1$ halts & accepts \Rightarrow M halts & accepts $w \notin A \Rightarrow M_2$ halts & rejects \Rightarrow M halts & rejects Therefore, M decides A Therefore, A & A' are Turing-recognizable \Rightarrow A is decidable

Corollary

A'_{TM} is not Turing-recognizable

<u>Proof</u>

If it were, ATM would be decidable (which is isn't)

Reducibility

<u>**Theorem</u>** HALT_{TM} = { $\langle M, w \rangle$ | TM M halts on input w } is undecidable</u>

<u>Proof</u>

Suppose HALT_{TM} is decidable

Let R be a decider for HALT_{TM}

(*) Construct TM S that uses R to decide A_{TM} A_{TM} is undecidable $\Rightarrow \Leftarrow$

HALT_{TM} is undecidable

S = " On input $\langle M, w \rangle$:

1. Run R on $\langle M, w \rangle$

2. If R rejects (M does not halt on w), reject

3. If R accepts (M halts on w), run M on w

4. If M accepts, accept

5. If M rejects, reject

<u>**Theorem</u>** E_{TM} = { $\langle M \rangle | M \text{ is a TM and } L(M) = \emptyset$ } is undecidable</u>

<u>Proof</u>

Suppose E_{TM} is decidable Let R be a decider for E_{TM}

(*) Construct TM S that uses R to decide A_{TM}

 A_{TM} is undecidable $\Rightarrow \Leftarrow$

E_{TM} is undecidable

S = " On input $\langle M, w \rangle$:

1. Construct M_1 that rejects all strings that are not w, and accepts w only if M accepts w.

 $(M_1 = On x: if x \neq w, reject else Run M on w; if M accepts, accept)$ [M₁ is not a decider]

[we are not running it, we are merely constructing it]

- 2. Run R on M_1
- 3. R rejects $M_1 \Rightarrow L(M_1) \neq \emptyset \Rightarrow M_1$ accepts $w \Rightarrow M$ accept w; accept $\langle M, w \rangle$
- R accepts M1 ⇒ L(M₁) = Ø ⇒ M₁ does not accepts w ⇒ M does not accept w (it reject or loops on w); reject ⟨M, w⟩

<u>Theorem</u> REGULAR_{TM} = { $\langle M \rangle$ | M is a TM and L(M) is regular } is undecidable

<u>Proof</u>

Suppose REGULAR_{TM} is decidable

Let R be a decider for REGULAR $_{\mbox{\scriptsize TM}}$

(*) Construct TM S that uses R to decide A_{TM}

 A_{TM} is undecidable $\Rightarrow \Leftarrow$

REGULAR_{TM} is undecidable

- S = " On input $\langle M, w \rangle$:
 - 5. Construct M₂ that accepts all string in the non-regular language 0ⁿ1ⁿ, and accepts all other string only if M accepts w.
 [therefore if M accepts w, M₂ recognizes Σ*, which is regular]
 (M₂ = On x: if x has form 0ⁿ1ⁿ, accept else Run M on w; if M accepts, accept)
 [M₂ is not a decider]
 [we are not running it, we are merely constructing it]
 - 6. Run R on M_2
 - R rejects M₂ ⇒ L(M₂) is regular ⇒ M₂ accepts all strings ⇒ M accepts w; accept ⟨M, w⟩
 - 8. R accepts M1 \Rightarrow L(M₁) is not regular \Rightarrow M₂ only accepts string of form $0^n 1^n \Rightarrow$ M does not accept w (it reject or loops on w); reject $\langle M, w \rangle$ "

<u>**Theorem</u>** EQ_{TM} = { $\langle M_1, M_2 \rangle | L(M_1) = L(M_2)$ } is undecidable</u>

<u>Proof</u>

(show that if EQ_{TM} is decidable, so is E_{TM}) [fairly easy]

<u>Theorem</u> ALL_{CFG} = { $\langle G \rangle$ | G is a CFG and L(G) = Σ^* }

[proof is in book; non-trivial]

The Domino Problem (PCP)

[describe the domino problem, state that its undecidable]

A single domino:
$$\left[\frac{a}{ab}\right]$$

A set of dominos: $\left\{\left[\frac{b}{ca}\right], \left[\frac{a}{ab}\right], \left[\frac{ca}{a}\right], \left[\frac{abc}{c}\right]\right\}$

Problem: write a program that list the dominos (repeats OK) so that:

top string of symbols = bottom string of symbols (if such a listing exists)

For example: $\left[\frac{a}{ab}\right]\left[\frac{b}{ca}\right]\left[\frac{ca}{a}\right]\left[\frac{a}{ab}\right]\left[\frac{abc}{c}\right]$ is a solution to the set above.

Impossible! [Not that it "takes to long" you can't do it on a computer]

[next week : mapping reducibility]